Optimization of Conditional Value-at-Risk

نویسنده

  • Stanislav Uryasev
چکیده

A new approach to optimizing or hedging a portfolio of nancial instruments to reduce risk is presented and tested on applications. It focuses on minimizing Conditional Value-at-Risk (CVaR) rather than minimizing Value-at-Risk (VaR), but portfolios with low CVaR necessarily have low VaR as well. CVaR, also called Mean Excess Loss, Mean Shortfall, or Tail VaR, is anyway considered to be a more consistent measure of risk than VaR. Central to the new approach is a technique for portfolio optimization which calculates VaR and optimizes CVaR simultaneously. This technique is suitable for use by investment companies, brokerage rms, mutual funds, and any business that evaluates risks. It can be combined with analytical or scenario-based methods to optimize portfolios with large numbers of instruments, in which case the calculations often come down to linear programming or nonsmooth programming. The methodology can be applied also to the optimization of percentiles in contexts outside of nance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three steps method for portfolio optimization by using Conditional Value at Risk measure

Comprehensive methods must be used for portfolio optimization. For this purpose, financial data of stock companies, inputs and outputs variable, the risk measure and investor’s preferences must be considered. By considering these items, we propose a method for portfolio optimization. In this paper, we used financial data of companies for screening the stock companies. We used Conditional Value ...

متن کامل

Portfolio Optimization Based on Cross Efficiencies By Linear Model of Conditional Value at Risk Minimization

Markowitz model is the first modern formulation of portfolio optimization problem. Relyingon historical return of stocks as basic information and using variance as a risk measure aretow drawbacks of this model. Since Markowitz model has been presented, many effortshave been done to remove theses drawbacks. On one hand several better risk measures havebeen introduced and proper models have been ...

متن کامل

Optimal Portfolio Selection for Tehran Stock Exchange Using Conditional, Partitioned and Worst-case Value at Risk Measures

This paper presents an optimal portfolio selection approach based on value at risk (VaR), conditional value at risk (CVaR), worst-case value at risk (WVaR) and partitioned value at risk (PVaR) measures as well as calculating these risk measures. Mathematical solution methods for solving these optimization problems are inadequate and very complex for a portfolio with high number of assets. For t...

متن کامل

Robust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models

Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...

متن کامل

Using MODEA and MODM with Different Risk Measures for Portfolio Optimization

The purpose of this study is to develop portfolio optimization and assets allocation using our proposed models. The study is based on a non-parametric efficiency analysis tool, namely Data Envelopment Analysis (DEA). Conventional DEA models assume non-negative data for inputs and outputs. However, many of these data take the negative value, therefore we propose the MeanSharp-βRisk (MShβR) model...

متن کامل

Robust portfolio selection with polyhedral ambiguous inputs

 Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999